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This note corrects and augments the results of Blumen, Drazin & Billings (1975) 
on the linear instability of a shear layer between two streams of an inviscid com- 
pressible fluid at the same temperature. The main conclusion of these authors, that 
the shear layer is unstable to two-dimensional disturbances however large the Mach 
number, is confirmed in the present paper. Also a third mode of instability is dis- 
covered and the character of all three modes revealed by a series of accurate calcula- 
tions. 

The instability of a shear layer of an inviscid compressible fluid is a classical problem 
of fluid mechanics, which has attracted the attention of some distinguished scientists 
of earlier generations, notably Ackeret (1928) and Landau; and for this reason alone 
it is desirable to set the record straight. Although the work below is very specialized, 
it does, however, have a wider significance both as a case study of the great care 
necessary to unravel problems of instability when there are several modes, and as a 
prototype of similar problems of instability of plane parallel flow of inviscid fluid 
under the influence of some other external force field, for example buoyancy or variable 
Coriolis parameter. 

Following Blumen (1970) we consider the instability of a basic shear layer, with 
velocity u = tanh y i, of an unbounded inviscid perfect gas a t  uniform temperature. 
For this problem Blumen (1970) found only one unstable mode, which is stationary, 
and Blumen et al. (1975) discovered a new pair of unstable modes with equal but 
opposite phase velocities. This note shows that the pattern of unstable modes is even 
more complicated than as described by Blumen et al. (1975),  who confused the modes 
where the value of the Mach number M (based on half the velocity difference across 
the shear layer) is quite close to unity. However, their general physical conclusions, 
their asymptotic results (in particular their equation (14 ) ,  about which they expressed 
doubt), and most of their numerical results are confirmed. 

We follow the notation and the statement of the problem of these authors and, in 
particular, we suppose that each normal mode varies like exp {ia(x - ct)} ,  where 
c = c, + ic,, so that the relative growth rate of a mode is act and its real phase speed is 
c,. We shall not be concerned herein with the three continuous spectra of the problem 
which would seem to occur with real c and - 1 < c < 1, M-2 < ( l - ~ ) ~  and 
M-2 < ( 1  +c)2. 
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FIGURE 1. Graphs of ci against a. (a) The curve for M = 0.94, denoted by a broken line. c, = 0. 
( b )  The curve for M = 0.96, denoted by a continuous line. c, + 0 on the upper- and lowermost 
of the nearly straight parts with ends on the a axis; c, = 0 on the rest. (c) The curve for 
M = 0.98, denoted by a dotted line. c, + 0 on the segment whose ends are the upper- and 
lowermost points of the graph on the a axis; c, = 0 on the rest of the graph. 
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FIQ~RE 2. Graphs of ci against a. (a) The curve for M = 1.1, denoted by a continuous line. 
c, + 0 on the nearly straight part; c, = 0 on the rest. ( b )  The curve for M = 1.5, denoted by 
a dotted line. c, + 0. 
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FIGURE 3. The M ,  a plane near 1M = 1. Continuous lines denote marginal curves for some mode 
( c  = 0) or modes (c, += 0, ci = 0) and the broken line denotes the curve of bifurcation. 

It seems simplest to describe our new results grapIilcally, so we shall lust present 
some figures and explain them briefly. Figures 1 and 2 show graphs of the imaginary 
part ci of the phase speed of the unstable modes as a function of the wavenumber a 
for five typical values of the Mach number. For each mode with c, > 0 there exists a 
similar mode (essentially the mode reflected in the origin of the x, y plane) with the 
same values of M ,  a and ci but with opposite phase speed - c,; so a curve in the figures 
denoted by ' c ,  =# 0' represents two travelling modes with phase speed -c c,. We have 
chosen typical values of M so that the figures illustrate the main topological types of 
graph. These figures can be understood better with use of figure 3, which depicts the 
M ,  a plane near M = 1.  

Thus curve (a) in figure 1 is typical of graphs for 0 < M < Ml, say, where we com- 
puted MI = 0.9413. For this case there is a unique unstable mode, which is stationary, 
so that c, = 0. As M increases through the value Ml there appears a pair of similar 
modes, first with c, = 0.0905 at the point ci = 0,  a = a1 = 0.317 and then as a 
segment. As M increases above Hl the segment representing the pair of travelling 
modes grows and approaches the curve c, = 0. The segment meets the curve c, = 0 
at ci = 0, a = a2 when M = M,, say, where we computed M2 = 0.9430 and a2 = 0.333. 
Then as M increases above M, the segment crosses the curve, as shown in figure 1,  
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curve ( a ) ,  which is typical of the case M, < M < M3. At the intersection the segment 
represents two travelling modes f c, + 0 and the curve one stationary mode c, = 0 
independently until M attains the value M3. 

At this value of M the values of f c, a t  the intersection of the segment and the 
curve become zero and the modes bifurcate. We computed this first point of bifurcation 
as M3 = 0.9674, a3 = 0.245. The typical case for M3 < M < 1 is illustrated by curve 
(c) in figure 1.  We see that there are either none, one or three unstable modes for each 
value of a. (Remember that ‘c, =t= 0’  denotes two unstable travelling modes.) As 
M f 1 one of the bifurcation points tends to the origin of the ci, a plane, there being 
a cusp a t  the origin when M = 1.  For the case when 1 < 31 < 24, illustrated by curve 
(a)  in figure 2, the curves are topologically equivalent to the curves for M = 1, but 
the branch enters the origin at a positive angle to the a axis. All the while that M has 
been increasing, the value of ci corresponding to a = 0 has been decreasing; it reaches 
zero when M = 24. Hence the typical curve for M > 24 is as shown by curve ( b )  in 
figure 2. As M increases above 24, the curve shrinks indefinitely towards the origin. 

This description can be supplemented with some asymptotic results of Blumen 
et al. (1975). Their formula (14) always gives the unstable stationary mode just inside 
the circle a 2  + M2 = 1,  and their formulae (22) and (23) give the curves as they approach 
the origin in the ci, a plane for 1 < M < 24. In  particular, (23) yields 3c3 - ia as 
a J. 0 for M = 24, in fair agreement with our numerical results (which are especially 
difficult to derive accurately when a is small because of the outer boundary condition). 
We have also used our numerical results for M = 5 and 10 and Landau’s analytic 
result for a = 0 to suggest that the unstable modes have complex phase speeds 
given by 

c = ( 1  - M-l) + { & ( 1 . 8 ~ ~  + 0.757 - 0.125) + 0*287(0-42 - 7) i} M-3 + O(M-4) 
as M+co (1)  

for fixed 7 = aM < 0.42. It should be emphasized that this suggestion is based on a 
rough fib of our results; it  seems, however, to summarize aptly the behaviour of the 
eigenvalues c for large values of M .  

We have written of the bifurcations, and illustrated them in figures 1 and 2. These 
bifurcations seem to be of the simplest, namely the square-root, kind as recognized 
and interpreted by Gaster (1968) in a similar problem of hydrodynamic instability. 
Thus if there is one solution with eigenvalue c, and eigenfunction po a t  a point (M,, a,) 
of bifurcation then there are two neighbouring eigenvalues c,+Sc a t  points 
(M, + SM, a, + Sa) such that 

6c N (a, Sa + b, SM))  as Sa, SM+ 0, (2) 

for some constants a, and b,. This is consistent with our examination of some details, 
as well as of the qualitative character, of our numerical results. Moreover, applying 
the analytic method of Banks & Drazin (1973, 9 6) to perturb a known eigensolution, 
one can easily confirm this behaviour, showing that bifurcations may occur where the 
integral 
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vanishes. It then follows that the tangent to the curve of bifurcation at the point 
(No, a,) is given by 

00 

I~ = J- co {a: S M ~  + 6a2 [M: - (u - Co)-2])p: ay = 0, 

i.e. by 
00 

{(tanh y - c,)-~ - M:}p:dy N aoNo 6M 1- dy. (3) 

Computation of I, at a point of the curve of bifurcation showed that I, does indeed 
vanish there. 

These asymptotic results assist interpretation of our calculations of the curve of 
bifurcation, shownin figure 3. This figure shows how close together are the two marginal 
curves as they descend to the point M = 1, a = 0, the curve of bifurcation being 
narrowly confined by the marginal curve c, P 0 on its left and the quarter-circle 
c = 0 on its right. This closeness of the three curves indicates the severe difficulty 
of numerical calculation of the eigenvalues. To relate figures 1 and 2 to figure 3 it may 
help to note that the unstable travelling modes are represented in figure 3 by points 
confined within the marginal curve c,. $. 0 and the unstable stationary modes by points 
within the quarter-circle or the curve of bifurcation. 

At many stages of the computations it was necessary to calculate quite accurately 
in order to obtain the above results because of the closeness of the eigenvalues and 
because of the danger of ‘mode-jumping ’ as the parameters a and M were varied. 

We used a Runge-Kutta method to integrate the differential equation (equation 
(2) of Blumen et al. 1975) along a contour which was indented below the critical point 
in the complex y plane and obtained the eigenvalue c by ‘shooting’; initially it was 
necessary to use invariant imbedding by varying ci, having fixed c, = 0 and chosen 
appropriate values of M and a, to determine that there are three and only three unstable 
stationary modes. 

After submission of the above work, the valuable numerical results of Gropengiesser 
(1969) were brought to our attention. He took the profile of a free boundary layer 
between two streams at various different temperatures, rather than of a hyperbolic 
tangent between streams a t  the same temperature. He then computed the charac- 
teristics of spatially, rather than of temporally, growing modes. So his results are 
not strictly comparable with ours. Further, his results were computed only for 
0 < M < 2 (based on our definition of M ) .  By judgement of his figures, his numerical 
results seem to be about as accurate as those of Blumen et al. (1975), but lack analytic 
results for support and interpretation. Nevertheless Gropengiesser recognized the 
existence of two unstable modes and made extensive computations. Our more accurate 
results and qualitative view of the three unstable modes over a larger range of Mach 
number supplement and interpret his results, which cover a greater variety of shear 
layers. 

We need not elaborate further the details of this problem, but the occurrence of 
extra modes of instability and the associated numerical difficulty deserve wider 
attention. It seems that when a basic state permits propagation ofa wave, for example 
sound, the instability of a shear flow may be complicated by the occurrence of extra 
modes of instability. In extreme ranges of the parameters these modes may be recog- 
nized separately as inertial instability or as waves, but in general they are not separable 
in any simple way. Blumen et al. (1975, p. 306) have pointed out some examples of this 
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occurrence of multiple modes. In  solving a problem of baroclink instability, Garcia & 
Norscini (1970) seem to have revealed another. The literature of the instability of 
shear flows is scattered with omissions and misinterpretations because of ignorance 
of extra modes or because of the great difficulty of calculating their characteristics 
even when their existence is recognized. To take yet another example, Gage & Miller 
(1974) took great care to calculate the stability characteristics of a jet in a stratified 
viscous incompressible fluid and recognized ‘a curious bimodal behaviour of the curve 
of neutral stability’. It seems that because of the notorious difficulty of calculating 
the characteristics of long waves they did not clearly identify the presence of a second 
mode, which was subsequently revealed by the analytic and numerical work of 
Silcock (1975). 
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